Installing D:\cpanrun\build\5-8-0\site\lib\Graph\ModularDecomposition.pm Writing D:\cpanrun\build\5-8-0\site\lib\auto\Graph\ModularDecomposition\.packlist Appending installation info to D:\cpanrun\build\5-8-0\lib/perllocal.pod ularDecomposition debugging at t\01.t line 22 Turning on Graph::ModularDecomposok t\03..............ok t\04..............ok t\05..............ok t\06..............ok t\07..............ok t\08..............ok t\09..............ok t\10..............ok t\11..............ok t\12..............ok t\13..............ok t\14..............ok t\15..............ok 3/3 skipped: t\16..............ok t\17..............ok t\18..............ok t\19..............ok t\pod-coverage....ok t\pod.............skipped all skipped: Test::Pod 1.00 required for testing POD All tests successful, 1 test and 3 subtests skipped. Files=21, Tests=171, 14 wallclock secs ( 0.00 cusr + 0.00 csys = 0.00 CPU) l 3 at t\02.t line 58 partition# G = a-c,a-d,b-d, v = d setminus# bdac - d = bac partition# @S = bac partition# L{S}[0] = d partition# ZS = d p..n_subsets# @S = bac, w = d p..n_subsets# xw = bd C = b p..n_subsets# xw = ad C = ba p..n_subsets# xw = cd D = c partition# W = ba setminus# bac - ba = c setminus# d - d = setunion# c U = c partition# tempset = c partition# W = c setminus# bac - c = ba setminus# d - d = setunion# ba U = ba partition# tempset = ab partition# ZS = c p..n_subsets# @S = ba, w = c p..n_subsets# xw = bc D = b p..n_subsets# xw = ac C = a partition# W = a setminus# ba - a = b setminus# c - c = setunion# b U = b partition# tempset = b partition# W = b setminus# ba - b = a setminus# c - c = setunion# a U = a partition# tempset = a partition# ZS = ab p..n_subsets# @S = c, w = a p..n_subsets# xw = ca B = c partition# W = c setminus# c - c = setminus# ab - a = b setunion# U b = b partition# tempset = b partition# ZS = b p..n_subsets# @S = a, w = b p..n_subsets# xw = ab D = a partition# W = a setminus# a - a = setminus# b - b = setunion# U = partition# ZS = a p..n_subsets# @S = b, w = a p..n_subsets# xw = ba D = b partition# W = b setminus# b - b = setminus# a - a = setunion# U = partition# ZS = b p..n_subsets# @S = c, w = b p..n_subsets# xw = cb D = c partition# W = c setminus# c - c = setminus# b - b = setunion# U = Turning off Graph::ModularDecomposition debugging at t\02.t line 60 Turning on Graph::ModularDecomposition debugging, level 3 at t\02.t line 120 partition# G = a-c,a-d,b-d,c-a,e-b,e-d,e-g,f-d,f-g,g-d, v = a setminus# febdacg - a = febdcg partition# @S = febdcg partition# L{S}[0] = a partition# ZS = a p..n_subsets# @S = febdcg, w = a p..n_subsets# xw = fa D = f p..n_subsets# xw = ea D = fe p..n_subsets# xw = ba D = feb p..n_subsets# xw = da B = d p..n_subsets# xw = ca A = c p..n_subsets# xw = ga D = febg partition# W = c setminus# febdcg - c = febdg setminus# a - a = setunion# febdg U = febdg partition# tempset = bdefg partition# W = d setminus# febdcg - d = febcg setminus# a - a = setunion# febcg U = febcg partition# tempset = bcefg partition# W = febg setminus# febdcg - febg = dc setminus# a - a = setunion# dc U = dc partition# tempset = cd partition# ZS = bdefg p..n_subsets# @S = c, w = b p..n_subsets# xw = cb D = c partition# W = c setminus# c - c = setminus# bdefg - b = defg setunion# U defg = defg partition# tempset = defg partition# ZS = bcefg p..n_subsets# @S = d, w = b p..n_subsets# xw = db B = d partition# W = d setminus# d - d = setminus# bcefg - b = cefg setunion# U cefg = cefg partition# tempset = cefg partition# ZS = cd p..n_subsets# @S = febg, w = c p..n_subsets# xw = fc D = f p..n_subsets# xw = ec D = fe p..n_subsets# xw = bc D = feb p..n_subsets# xw = gc D = febg partition# W = febg setminus# febg - febg = setminus# cd - c = d setunion# U d = d partition# tempset = d partition# ZS = defg p..n_subsets# @S = c, w = d p..n_subsets# xw = cd D = c partition# W = c setminus# c - c = setminus# defg - d = efg setunion# U efg = efg partition# tempset = efg partition# ZS = cefg p..n_subsets# @S = d, w = c p..n_subsets# xw = dc D = d partition# W = d setminus# d - d = setminus# cefg - c = efg setunion# U efg = efg partition# tempset = efg partition# ZS = d p..n_subsets# @S = febg, w = d p..n_subsets# xw = fd C = f p..n_subsets# xw = ed C = fe p..n_subsets# xw = bd C = feb p..n_subsets# xw = gd C = febg partition# W = febg setminus# febg - febg = setminus# d - d = setunion# U = partition# ZS = efg p..n_subsets# @S = c, w = e p..n_subsets# xw = ce D = c partition# W = c setminus# c - c = setminus# efg - e = fg setunion# U fg = fg partition# tempset = fg partition# ZS = efg p..n_subsets# @S = d, w = e p..n_subsets# xw = de B = d partition# W = d setminus# d - d = setminus# efg - e = fg setunion# U fg = fg partition# tempset = fg partition# ZS = fg p..n_subsets# @S = c, w = f p..n_subsets# xw = cf D = c partition# W = c setminus# c - c = setminus# fg - f = g setunion# U g = g partition# tempset = g partition# ZS = fg p..n_subsets# @S = d, w = f p..n_subsets# xw = df B = d partition# W = d setminus# d - d = setminus# fg - f = g setunion# U g = g partition# tempset = g partition# ZS = g p..n_subsets# @S = c, w = g p..n_subsets# xw = cg D = c partition# W = c setminus# c - c = setminus# g - g = setunion# U = partition# ZS = g p..n_subsets# @S = d, w = g p..n_subsets# xw = dg B = d partition# W = d setminus# d - d = setminus# g - g = setunion# U = Turning off Graph::ModularDecomposition debugging at t\02.t line 122 Turning on Graph::ModularDecomposition debugging, level 3 at t\03.t line 33 Turning off Graph::ModularDecomposition debugging at t\03.t line 36 Turning on Graph::ModularDecomposition debugging, level 3 at t\03.t line 53 gdct: a-c,a-d,a-g,a-h,b-d,b-g,b-h,c-e,c-f,c-g,c-h,d-e,d-f,d-g,d-h,e-g,e-h,f-h vs. a-c,a-d,a-e,a-f,a-g,a-h,b-d,b-e,b-f,b-g,b-h,c-e,c-f,c-g,c-h,d-e,d-f,d-g,d-h,e-g,e-h,f-h Turning off Graph::ModularDecomposition debugging at t\03.t line 56 Turning on Graph::ModularDecomposition debugging, level 3 at t\03.t line 72 restriction(Graph::ModularDecomposition) setminus# hbfdceag - abcd = hfeg restriction(a-c,a-d,a-g,a-h,b-d,b-g,b-h,c-e,c-f,c-g,c-h,d-e,d-f,d-g,d-h,e-g,e-h,f-h|a+b+c+d) = a-c,a-d,b-d Turning off Graph::ModularDecomposition debugging at t\03.t line 75 Turning on Graph::ModularDecomposition debugging, level 3 at t\03.t line 91 factor# X = ARRAY(0x1eecc78) factor# @X = a b factor# newnode = a|b factor# representative node a factor# successor c factor# successor g factor# successor h factor# successor d factor# X = ARRAY(0x1ee4b50) factor# @X = c d e f factor# newnode = c|d|e|f factor# representative node c factor# predecessor a|b factor# successor f factor# successor e factor# successor g factor# successor h factor# X = ARRAY(0x1ee4bec) factor# @X = g h factor# newnode = g|h factor# representative node g factor# predecessor a|b factor# predecessor c|d|e|f Turning off Graph::ModularDecomposition debugging at t\03.t line 96 Turning on Graph::ModularDecomposition debugging, level 3 at t\12.t line 20 MD()=... v=undef ...MD= Turning off Graph::ModularDecomposition debugging at t\12.t line 22 Turning on Graph::ModularDecomposition debugging, level 1 at t\12.t line 33 MD(a-c,a-d,b-d)=... v=c gd = a-c,a-d,b-d G([a-c,a-d,b-d], c) =... ...G()=a-b,b-d,d-a,d-b Gdd = [a+b+d], 1 @f=[a+b+d] @F=a b d u = primitive[abcd]([c]) MD(a)=... v=a ...MD=[a] MD(b)=... v=b ...MD=[b] MD(d)=... v=d ...MD=[d] ...MD=primitive[abcd]([c];[a];[b];[d]) Turning on Graph::ModularDecomposition debugging, level 1 at t\13.t line 33 gdct: a-b,a-c,b-c vs. a-b,a-c,b-c MD(a-b,a-c,b-c)=... v=b gd = a-b,a-c,b-c G([a-b,a-c,b-c], b) =... ...G()=a,c Gdd = [a,c], 2 @f=[a c] @F=a c u = linear[bac]([b]) MD(a)=... v=a ...MD=[a] MD(c)=... v=c ...MD=[c] ...MD=linear[bac]([b];[a];[c]) gdct: vs. MD()=... v=undef ...MD= Turning off Graph::ModularDecomposition debugging at t\13.t line 38 Turning on Graph::ModularDecomposition debugging, level 3 at t\15.t line 28 Turning off Graph::ModularDecomposition debugging at t\15.t line 30